Search results
Results from the WOW.Com Content Network
A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.
In robotics, Vector Field Histogram (VFH) is a real time motion planning algorithm proposed by Johann Borenstein and Yoram Koren in 1991. [1] The VFH utilizes a statistical representation of the robot's environment through the so-called histogram grid, and therefore places great emphasis on dealing with uncertainty from sensor and modeling errors.
Spawning triggers allow many fish to synchronize their breeding, making it more probable that individual fish will find a mate. In most cases, if these triggers were not present, male and female fish would not meet at the right stage and the number of offspring would be reduced.
Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.
An advantage of these multi-resolution histograms is their ability to capture co-occurring features. The pyramid match kernel builds multi-resolution histograms by binning data points into discrete regions of increasing size. Thus, points that do not match at high resolutions have the chance to match at low resolutions.
Orange, a data mining, machine learning, and bioinformatics software; Pandas – High-performance computing (HPC) data structures and data analysis tools for Python in Python and Cython (statsmodels, scikit-learn) Perl Data Language – Scientific computing with Perl; Ploticus – software for generating a variety of graphs from raw data
Thus, the histogram for a very dark image will have most of its data points on the left side and center of the graph. Conversely, the histogram for a very bright image with few dark areas and/or shadows will have most of its data points on the right side and center of the graph.
Real data is always finite, and so its study requires us to take stochasticity into account. Statistical analysis gives us the ability to separate true features of the data from artifacts introduced by random noise. Persistent homology has no inherent mechanism to distinguish between low-probability features and high-probability features.