enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Godement resolution - Wikipedia

    en.wikipedia.org/wiki/Godement_resolution

    The Godement resolution of a sheaf is a construction in homological algebra that allows one to view global, cohomological information about the sheaf in terms of local information coming from its stalks.

  3. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. ISBN 0-521-79540-0. A modern, geometrically flavored introduction to algebraic topology. The book is available free in PDF and PostScript formats on the author's homepage. Kainen, P. C. (1971). "Weak Adjoint Functors". Mathematische Zeitschrift. 122: 1– 9.

  4. Products in algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Products_in_algebraic_topology

    Differential graded algebra: the algebraic structure arising on the cochain level for the cup product; Poincaré duality: swaps some of these; Intersection theory: for a similar theory in algebraic geometry

  5. Category:Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Category:Algebraic_topology

    Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces The main article for this category is Algebraic topology . Contents

  6. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    In mathematics, especially in algebraic topology, the homotopy limit and colimit [1] pg 52 are variants of the notions of limit and colimit extended to the homotopy category (). The main idea is this: if we have a diagram:

  7. Cohomology - Wikipedia

    en.wikipedia.org/wiki/Cohomology

    Singular cohomology is a powerful invariant in topology, associating a graded-commutative ring with any topological space. Every continuous map: determines a homomorphism from the cohomology ring of to that of ; this puts strong restrictions on the possible maps from to .

  8. Cap product - Wikipedia

    en.wikipedia.org/wiki/Cap_product

    In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that q ≤ p, to form a composite chain of degree p − q. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938.

  9. Homotopy lifting property - Wikipedia

    en.wikipedia.org/wiki/Homotopy_lifting_property

    In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as an instance of the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space E to another one, B.