Search results
Results from the WOW.Com Content Network
Thus, . In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. [1][2] In other words, A = B is an identity if A and B define the same ...
Identity element. In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. [1][2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings.
Linear map. In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
Identity of indiscernibles. Impossibility for separate objects to have all their properties in common. The identity of indiscernibles is an ontological principle that states that there cannot be separate objects or entities that have all their properties in common. That is, entities x and y are identical if every predicate possessed by x is ...
The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring. Conversely, if this identity holds in a ring R for all pairs of elements a and b, then R is commutative. To see this, apply the distributive law to ...
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
Jacobi identity. In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a ...
Three sets involved. [edit] In the left hand sides of the following identities, L{\displaystyle L}is the L eft most set, M{\displaystyle M}is the M iddle set, and R{\displaystyle R}is the R ight most set. Precedence rules. There is no universal agreement on the order of precedenceof the basic set operators.