Search results
Results from the WOW.Com Content Network
Concrete tests can measure the "plastic" (unhydrated) properties of concrete prior to, and during placement. As these properties affect the hardened compressive strength and durability of concrete (resistance to freeze-thaw), the properties of workability (slump/flow), temperature, density and age are monitored to ensure the production and ...
Concrete has a very low coefficient of thermal expansion and shrinks as it matures. All concrete structures crack to some extent, due to shrinkage and tension. Concrete that is subjected to long-duration forces is prone to creep. Tests can be performed to ensure that the properties of concrete correspond to specifications for the application.
As per Indian codes, compressive strength of concrete is defined as: Field cured concrete in cubic steel molds (Greece) The compressive strength of concrete is given in terms of the characteristic compressive strength of 150 mm size cubes tested after 28 days (fck). In field, compressive strength tests are also conducted at interim duration i.e ...
Self-healing concrete is characterized as the capability of concrete to fix its cracks on its own autogenously or autonomously. It not only seals the cracks but also partially or entirely recovers the mechanical properties of the structural elements. This kind of concrete is also known as self-repairing concrete.
Greater chemical and thermal resistance, and better mechanical properties, are said to be achieved for geopolymer concrete at both atmospheric and extreme conditions. Similar concretes have not only been used in Ancient Rome (see Roman concrete ), but also in the former Soviet Union in the 1950s and 1960s.
Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [ 18 ]
Concrete spalling from the ceiling of an office unit (interior) in Singapore, possibly due to rebar corrosion. Reinforced concrete can fail due to inadequate strength, leading to mechanical failure, or due to a reduction in its durability. Corrosion and freeze/thaw cycles may damage poorly designed or constructed reinforced concrete.
The silicates are responsible for the cement's mechanical properties — the tricalcium aluminate and brownmillerite are essential for the formation of the liquid phase during the sintering process of clinker at high temperature in the kiln. The chemistry of these reactions is not completely clear and is still the object of research. [7]