Search results
Results from the WOW.Com Content Network
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
where is ADM mass of the black hole and N a are the conserved charges and a runs from 1 to n. The signature of the metric reflects the sign of the hole's specific heat . For a Reissner–Nordström black hole , the Ruppeiner metric has a Lorentzian signature which corresponds to the negative heat capacity it possess, while for the BTZ black ...
According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
Several rigorous results concerning QFT in the presence of a black hole have been obtained. In particular the algebraic approach allows one to deal with the problems mentioned above arising from the absence of a preferred reference vacuum state, the absence of a natural notion of particle and the appearance of unitarily inequivalent ...
The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. [1] [2] [3] The process takes advantage of the ergosphere – a region of spacetime around the black hole dragged by its rotation faster than the speed of light, meaning that from the point of view of an outside observer any matter inside ...
In 1972, Bekenstein was the first to suggest that black holes should have a well-defined entropy. He wrote that a black hole's entropy was proportional to the area of its (the black hole's) event horizon. Bekenstein also formulated the generalized second law of thermodynamics, black hole thermodynamics, for systems including black holes.
In the theory of general relativity, the Gibbons–Hawking effect is the statement that a temperature can be associated to each solution of the Einstein field equations that contains a causal horizon.