enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycosidic bond - Wikipedia

    en.wikipedia.org/wiki/Glycosidic_bond

    Glycosidic bonds of the form discussed above are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides ), where the oxygen of the glycosidic bond is replaced with a sulfur atom.

  3. Amylose - Wikipedia

    en.wikipedia.org/wiki/Amylose

    Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch , making up approximately 20–25% of it. Because of its tightly packed helical structure, amylose is more resistant to digestion than other starch molecules and is therefore an important ...

  4. Glycoside hydrolase - Wikipedia

    en.wikipedia.org/wiki/Glycoside_hydrolase

    A Pancreatic alpha-Amylase 1HNY, a glycoside hydrolase. In biochemistry, glycoside hydrolases (also called glycosidases or glycosyl hydrolases) are a class of enzymes which catalyze the hydrolysis of glycosidic bonds in complex sugars.

  5. Amylopectin - Wikipedia

    en.wikipedia.org/wiki/Amylopectin

    Amylopectin is synthesized by the linkage of α(1→4) Glycosidic bonds. The extensive branching of amylopectin (α(1→6) Glycosidic bond) is initiated by BE and this is what differentiates amylose from amylopectin. DBE is also needed during this synthesis process to regulate the distribution of these branches. [19] [22]

  6. α-Amylase - Wikipedia

    en.wikipedia.org/wiki/Α-Amylase

    α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]

  7. Amylase - Wikipedia

    en.wikipedia.org/wiki/Amylase

    Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. They belong to glycoside hydrolase family 14.

  8. Alpha glucan - Wikipedia

    en.wikipedia.org/wiki/Alpha_glucan

    Alpha-glucan is also commonly found in bacteria, yeasts, plants, and insects. Whereas the main pathway of α-glucan synthesis is via glycosidic bonds of glucose monomers, α-glucan can be comparably synthesized via the maltosyl transferase GlgE and branching enzyme GlgB. [2] This alternative pathway is common in many bacteria, which use GlgB ...

  9. Trehalose - Wikipedia

    en.wikipedia.org/wiki/Trehalose

    Trehalose is a disaccharide formed by a 1,1-glycosidic bond between two α-glucose units. It is found in nature as a disaccharide and also as a monomer in some polymers. [7] Two other stereoisomers exist: α,β-trehalose, also called neotrehalose, and β,β-trehalose, also called isotrehalose. Neither of these alternate isomers has been ...