enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    3 Example. 4 One-sided version. ... Download as PDF; Printable version; ... That is, both series converge or both series diverge. Example

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  4. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    Notably, these series provide examples of infinite sums that converge or diverge arbitrarily slowly. For instance, in the case of k = 2 {\displaystyle k=2} and α = 1 {\displaystyle \alpha =1} , the partial sum exceeds 10 only after 10 10 100 {\displaystyle 10^{10^{100}}} (a googolplex ) terms; yet the series diverges nevertheless.

  5. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the ...

  6. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  7. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is ⁠ x 2 {\displaystyle x^{2}} ⁠ , while for the relative entropy the generator is the negative entropy ⁠ x log ⁡ x ...

  8. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. [2] The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.

  9. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .