Search results
Results from the WOW.Com Content Network
In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". [3] [4] The term was introduced by Carl Nägeli in 1858. [5] [6] Different types of phloem can be distinguished. The early phloem formed in the growth apices is called protophloem.
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
When the water pressure within the xylem reaches extreme levels due to low water input from the roots (if, for example, the soil is dry), then the gases come out of solution and form a bubble – an embolism forms, which will spread quickly to other adjacent cells, unless bordered pits are present (these have a plug-like structure called a ...
The vascular cambium forms between the xylem and phloem in the vascular bundles and connects to form a continuous cylinder. The vascular cambium cells divide to produce secondary xylem to the inside and secondary phloem to the outside. As the stem increases in diameter due to production of secondary xylem and secondary phloem, the cortex and ...
The phloem, on the other hand, consists of living cells called sieve-tube members. Between the sieve-tube members are sieve plates, which have pores to allow molecules to pass through. Sieve-tube members lack such organs as nuclei or ribosomes, but cells next to them, the companion cells, function to keep the sieve-tube members alive. [citation ...
The fascicular and interfascicular cambia thus join up to form a ring (in three dimensions, a tube) which separates the primary xylem and primary phloem, the cambium ring. The vascular cambium produces secondary xylem on the inside of the ring, and secondary phloem on the outside, pushing the primary xylem and phloem apart.
Sieve elements are specialized cells that are important for the function of phloem, which is a highly organized tissue that transports organic compounds made during photosynthesis. Sieve elements are the major conducting cells in phloem. Conducting cells aid in transport of molecules especially for long-distance signaling.
Parenchyma is a versatile ground tissue that generally constitutes the "filler" tissue in soft parts of plants. It forms, among other things, the cortex (outer region) and pith (central region) of stems, the cortex of roots, the mesophyll of leaves, the pulp of fruits, and the endosperm of seeds.