enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]

  4. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    Unlike the ordinary Pochhammer symbol, the q-Pochhammer symbol can be extended to an infinite product: (;) = = (). This is an analytic function of q in the interior of the unit disk, and can also be considered as a formal power series in q.

  5. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]

  6. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  7. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  8. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    The mathematical constant e can be represented in a variety of ways as a real number.Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction.

  9. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    For instance, in contrast to the behavior of finite sums, rearranging the terms of an infinite series may result in convergence to a different number (see the article on the Riemann rearrangement theorem for further discussion). An example of a convergent series is a geometric series which forms the basis of one of Zeno's famous paradoxes: