enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.

  3. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Fix a complex number .If = for and () =, then () = ⌊ ⌋ and the formula becomes = ⌊ ⌋ = ⌊ ⌋ + ⌊ ⌋ +. If () >, then the limit as exists and yields the ...

  4. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    The basic idea is similar to Leibniz's probabilistic approach: essentially, the Cesàro sum of a series is the average of all of its partial sums. Formally one computes, for each n, the average σ n of the first n partial sums, and takes the limit of these Cesàro means as n goes to infinity. For Grandi's series, the sequence of arithmetic means is

  5. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906).

  6. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: + + + + = This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: (+)

  7. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum of the series is the triangular number = = (+), which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum.

  8. Telescoping series - Wikipedia

    en.wikipedia.org/wiki/Telescoping_series

    In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.

  9. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).