enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful ) has multiplicity above 1 for all prime factors.

  3. Amicable numbers - Wikipedia

    en.wikipedia.org/wiki/Amicable_numbers

    However, amicable numbers where the two members have different smallest prime factors do exist: there are seven such pairs known. [8] Also, every known pair shares at least one common prime factor. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 10 65.

  4. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:

  5. Rational sieve - Wikipedia

    en.wikipedia.org/wiki/Rational_sieve

    We will factor the integer n = 187 using the rational sieve. We'll arbitrarily try the value B=7, giving the factor base P = {2,3,5,7}. The first step is to test n for divisibility by each of the members of P; clearly if n is divisible by one of these primes, then we are finished already. However, 187 is not divisible by 2, 3, 5, or 7.

  6. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  7. Ruth–Aaron pair - Wikipedia

    en.wikipedia.org/wiki/Ruth–Aaron_pair

    Any Ruth–Aaron pair of square-free integers belongs to both lists with the same sum of prime factors. The intersection also contains pairs that are not square-free, for example (7129199, 7129200) = (7×11 2 ×19×443, 2 4 ×3×5 2 ×13×457).

  8. Cousin prime - Wikipedia

    en.wikipedia.org/wiki/Cousin_prime

    The only prime belonging to two pairs of cousin primes is 7. One of the numbers n, n + 4, n + 8 will always be divisible by 3, so n = 3 is the only case where all three are primes. An example of a large proven cousin prime pair is (p, p + 4) for = + which has 20008 digits.

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.