enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix congruence - Wikipedia

    en.wikipedia.org/wiki/Matrix_congruence

    Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space : two matrices are congruent if and only if they represent the same bilinear form with respect to different bases .

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  4. Modular group - Wikipedia

    en.wikipedia.org/wiki/Modular_group

    It is easy to show that the trace of a matrix representing an element of Γ(N) cannot be −1, 0, or 1, so these subgroups are torsion-free groups. (There are other torsion-free subgroups.) The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z/2Z) is isomorphic to S 3, Λ is a subgroup of index 6.

  5. Hill cipher - Wikipedia

    en.wikipedia.org/wiki/Hill_cipher

    Hill's cipher machine, from figure 4 of the patent. In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra.Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once.

  6. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  7. Non-commutative cryptography - Wikipedia

    en.wikipedia.org/wiki/Non-commutative_cryptography

    In contrast to non-commutative cryptography, the currently widely used public-key cryptosystems like RSA cryptosystem, Diffie–Hellman key exchange and elliptic curve cryptography are based on number theory and hence depend on commutative algebraic structures.

  8. Secret sharing using the Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Secret_Sharing_using_the...

    Secret sharing consists of recovering a secret S from a set of shares, each containing partial information about the secret. The Chinese remainder theorem (CRT) states that for a given system of simultaneous congruence equations, the solution is unique in some Z/nZ, with n > 0 under some appropriate conditions on the congruences.

  9. Congruence subgroup - Wikipedia

    en.wikipedia.org/wiki/Congruence_subgroup

    In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example is the subgroup of invertible 2 × 2 integer matrices of determinant 1 in which the off-diagonal entries are even .