enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The global form of an analytic function is completely determined by its local behavior in the following sense: if f and g are two analytic functions defined on the same connected open set U, and if there exists an element c ∈ U such that f (n) (c) = g (n) (c) for all n ≥ 0, then f(x) = g(x) for all x ∈ U. If a power series with radius of ...

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail ...

  4. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative. The slope of this line is (+) ().

  6. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:

  7. Newton polygon - Wikipedia

    en.wikipedia.org/wiki/Newton_polygon

    In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields.In the original case, the ultrametric field of interest was essentially the field of formal Laurent series in the indeterminate X, i.e. the field of fractions of the formal power series ring [[]], over , where was the real number or complex ...

  8. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  9. Puiseux series - Wikipedia

    en.wikipedia.org/wiki/Puiseux_series

    For each such , there is a local coordinate of at (which is a smooth point) such that the coordinates and can be expressed as formal power series of , say = + (since is algebraically closed, we can assume the valuation coefficient to be 1) and = +: then there is a unique Puiseux series of the form = / + (a power series in /), such that ...