enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial trace - Wikipedia

    en.wikipedia.org/wiki/Partial_trace

    Whereas the trace is a scalar-valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics , including consistent histories and ...

  3. Schmidt decomposition - Wikipedia

    en.wikipedia.org/wiki/Schmidt_decomposition

    In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .

  4. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    In this case, even entangled states can be written as a mixture of tensor products of single-party aphysical states, very similar to the form of separable states. In the qubit case, M k {\displaystyle M_{k}} are physical density matrices, which is consistent with the fact that for two qubits all PPT states are separable.

  5. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  6. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics.These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

  7. What's Going On With Palantir Technologies Stock Today?

    www.aol.com/finance/whats-going-palantir...

    Investors can gain exposure to the stock via REX AI Equity Premium Income ETF (NASDAQ:AIPI) and ProShares Big Data Refiners ETF (NYSE:DAT). Price Action : PLTR shares are up 4.88% at $69.63 at the ...

  8. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  9. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.