enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The simplex method is remarkably efficient in practice and was a great improvement over earlier methods such as Fourier–Motzkin elimination. However, in 1972, Klee and Minty [32] gave an example, the Klee–Minty cube, showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time. Since then, for almost ...

  3. MINOS (optimization software) - Wikipedia

    en.wikipedia.org/wiki/MINOS_(optimization_software)

    For linear programs, a two-phase primal simplex method is used. The first phase minimizes the sum of infeasibilities. For problems with linear constraints and a nonlinear objective, a reduced-gradient method is used. A quasi-Newton approximation to the reduced Hessian is maintained to obtain search directions. The method is most efficient when ...

  4. Revised simplex method - Wikipedia

    en.wikipedia.org/wiki/Revised_simplex_method

    The revised simplex method is mathematically equivalent to the standard simplex method but differs in implementation. Instead of maintaining a tableau which explicitly represents the constraints adjusted to a set of basic variables, it maintains a representation of a basis of the matrix representing the constraints.

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Simplex – Big M Method, Lynn Killen, Dublin City University. The Big M Method, businessmanagementcourses.org; The Big M Method, Mark Hutchinson; The Big-M Method with the Numerical Infinite M, a recently introduced parameterless variant; A THREE-PHASE SIMPLEX METHOD FOR INFEASIBLE AND UNBOUNDED LINEAR PROGRAMMING PROBLEMS, Big M method for M=1

  6. Criss-cross algorithm - Wikipedia

    en.wikipedia.org/wiki/Criss-cross_algorithm

    In its second phase, the simplex algorithm crawls along the edges of the polytope until it finally reaches an optimum vertex.The criss-cross algorithm considers bases that are not associated with vertices, so that some iterates can be in the interior of the feasible region, like interior-point algorithms; the criss-cross algorithm can also have infeasible iterates outside the feasible region.

  7. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Simplex vertices are ordered by their value, with 1 having the lowest (best) value. The Nelder–Mead method (also downhill simplex method, amoeba method, or polytope method) is a numerical method used to find the minimum or maximum of an objective function in a multidimensional space.

  8. CPLEX - Wikipedia

    en.wikipedia.org/wiki/CPLEX

    The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).

  9. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    There are algorithms for solving an LP in weakly-polynomial time, such as the ellipsoid method; however, they usually return optimal solutions that are not basic. However, Given any optimal solution to the LP, it is easy to find an optimal feasible solution that is also basic. [2]: see also "external links" below.