Search results
Results from the WOW.Com Content Network
A definite clause grammar (DCG) is a way of expressing grammar, either for natural or formal languages, in a logic programming language such as Prolog. It is closely related to the concept of attribute grammars / affix grammars. DCGs are usually associated with Prolog, but similar languages such as Mercury also include DCGs.
Operationally, Prolog's execution strategy can be thought of as a generalization of function calls in other languages, one difference being that multiple clause heads can match a given call. In that case, the system creates a choice-point, unifies the goal with the clause head of the first alternative, and continues with the goals of that first ...
Prolog is a logic programming language that has its origins in artificial intelligence, automated theorem proving and computational linguistics. [1] [2] [3]Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is intended primarily as a declarative programming language: the program is a set of facts and rules, which define relations.
The first clause states that a fact holds immediately after an event initiates (or causes) the fact. The second clause is a frame axiom, which states that a fact that holds at a time continues to hold at the next time unless it is terminated by an event that happens at the time. This formulation allows more than one event to occur at the same time:
B-Prolog was a high-performance implementation of the standard Prolog language with several extended features including matching clauses, action rules for event handling, finite-domain constraint solving, arrays and hash tables, declarative loops, and tabling. First released in 1994, B-Prolog is now a widely used CLP system.
Mercury is based on the logic programming language Prolog. It has the same syntax and the same basic concepts such as the selective linear definite clause resolution (SLD) algorithm. It can be viewed as a pure subset of Prolog with strong types and modes. As such, it is often compared to its predecessor in features and run-time efficiency.
Negation As Failure has been an important feature of logic programming since the earliest days of both Planner and Prolog. In Prolog, it is usually implemented using Prolog's extralogical constructs. More generally, this kind of negation is known as Weak Negation, [1] [2] in contrast with the strong (i.e. explicit, provable) negation.
The following Comparison of Prolog implementations provides a reference for the relative feature sets and performance of different implementations of the Prolog computer programming language. A comprehensive discussion of the most significant Prolog systems is presented in an article published in the 50-years of Prolog anniversary issue of the ...