Search results
Results from the WOW.Com Content Network
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).
The inner membrane is a phospholipid bilayer that contains the complexes of oxidative phosphorylation. which contains the electron transport chain that is found on the cristae of the inner membrane and consists of four protein complexes and ATP synthase.
NADH must be transported into the mitochondria to enter the oxidative phosphorylation pathway. However, the inner mitochondrial membrane is impermeable to NADH and only contains a transport system for NAD +. Depending on the type of tissue either the glycerol-3-phosphate shuttle pathway or the malate–aspartate shuttle pathway is used to ...
Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.
The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.
In eukaryotes, oxidative phosphorylation occurs in the mitochondrial cristae. It comprises the electron transport chain that establishes a proton gradient (chemiosmotic potential) across the boundary of the inner membrane by oxidizing the NADH produced from the Krebs cycle. ATP is synthesized by the ATP synthase enzyme when the chemiosmotic ...
Then they are transported across the inner mitochondrial membrane into the matrix and converted into the acetyl CoA to enter the citric acid cycle. [7] [8] Apoptotic components released from the intermembrane space of a mitochondrion. The respiratory chain in the inner mitochondrial membrane carries out oxidative phosphorylation.
The encoded protein (PHC) catalyzes the transport of phosphate from the cytosol into the mitochondrial matrix, either by proton cotransport or in exchange for hydroxyl ions. [6] In the final steps of oxidative phosphorylation, this protein catalyzes the uptake of a phosphate ion with a proton across the mitochondrial inner membrane. [9]