Search results
Results from the WOW.Com Content Network
an example of a non-antialiased PNG scatterplot created by R. The free statistical package R (see R programming language) can make a wide variety of nice-looking graphics. It is especially effective to display statistical data. On Wikimedia Commons, the category Created with R contains many examples, often including the corresponding R source code.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
This creates drawings where the thin "filaments" of the Mandelbrot set can be easily seen. This technique is used to good effect in the B&W images of Mandelbrot sets in the books "The Beauty of Fractals [9]" and "The Science of Fractal Images". [10] Here is a sample B&W image rendered using Distance Estimates:
Example(s) Interface Licence(s) Initial Release Year Latest Release Operating system Distinguishing features License Open Source (yes/no) Kst: GUI, CLI GPL Yes 2004 2021, v 2.0.x Linux, Windows, Mac fast real-time large-dataset plotting and viewing tool with basic data analysis functionality AIDA: LGPL: Yes 2001: October 2003 / 3.2.1
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
A beam compass and a regular compass Using a compass A compass with an extension accessory for larger circles A bow compass capable of drawing the smallest possible circles. A compass, also commonly known as a pair of compasses, is a technical drawing instrument that can be used for inscribing circles or arcs.
Example of a Joukowsky transform. The circle above is transformed into the Joukowsky airfoil below. In applied mathematics, the Joukowsky transform (sometimes transliterated Joukovsky, Joukowski or Zhukovsky) is a conformal map historically used to understand some principles of airfoil design.
The smallest-circle problem in the plane is an example of a facility location problem (the 1-center problem) in which the location of a new facility must be chosen to provide service to a number of customers, minimizing the farthest distance that any customer must travel to reach the new facility. [3]