Search results
Results from the WOW.Com Content Network
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
The circumcenter's position depends on the type of triangle: For an acute triangle (all angles smaller than a right angle), the circumcenter always lies inside the triangle. For a right triangle, the circumcenter always lies at the midpoint of the hypotenuse. This is one form of Thales' theorem.
The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
X(2) Centroid: intersection of the three medians: X(3) Circumcenter: center of the circumscribed circle: X(4) orthocenter: intersection of the three altitudes: X(5) nine-point center: center of the nine-point circle: X(6) symmedian point: intersection of the three symmedians: X(7) Gergonne point: symmedian point of contact triangle X(8) Nagel point
It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [3] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [4]
A quick glance into the world of modern triangle geometry as it existed during the peak of interest in triangle geometry subsequent to the publication of Lemoine's paper is presented below. This presentation is largely based on the topics discussed in William Gallatly's book [13] published in 1910 and Roger A Johnsons' book [14] first published ...
The three perpendicular bisectors meet in a single point, the triangle's circumcenter; this point is the center of the circumcircle, the circle passing through all three vertices. [20] Thales' theorem implies that if the circumcenter is located on the side of the triangle, then the angle opposite that side is a right angle. [21]