Search results
Results from the WOW.Com Content Network
The orthopole of lines passing through the circumcenter lie on the nine-point circle. A triangle's circumcircle, its nine-point circle, its polar circle, and the circumcircle of its tangential triangle [9] are coaxal. [10] Trilinear coordinates for the center of the Kiepert hyperbola are
The circumcenter's position depends on the type of triangle: For an acute triangle (all angles smaller than a right angle), the circumcenter always lies inside the triangle. For a right triangle, the circumcenter always lies at the midpoint of the hypotenuse. This is one form of Thales' theorem.
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
The nine-point center is the circumcenter of the medial triangle of the given triangle, the circumcenter of the orthic triangle of the given triangle, and the circumcenter of the Euler triangle. More generally it is the circumcenter of any triangle defined from three of the nine points defining the nine-point circle. [citation needed]
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.
The area of a bicentric quadrilateral can be expressed in terms of two opposite sides and the angle θ between the diagonals according to [9] = = . In terms of two adjacent angles and the radius r of the incircle, the area is given by [9]