enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries: Some hyperbolic triangles have no circumscribed circle , this is the case when at least one of its vertices is an ideal point or when all of its vertices lie on a horocycle or ...

  3. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.

  4. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  5. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Angle measures have signs. Here, they will be defined in the following way: Consider a triangle XYZ. The sign of angle ᗉ XYZ is positive if and only if the direction of the path along the shortest arc from side XY to side YZ is counterclockwise. The picture of the triangle on the right describes this.

  6. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    From Gyrovector space#Triangle centers. The study of triangle centers traditionally is concerned with Euclidean geometry, but triangle centers can also be studied in hyperbolic geometry. Using gyrotrigonometry, expressions for trigonometric barycentric coordinates can be calculated that have the same form for both euclidean and hyperbolic geometry.

  7. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The following are also concurrent: (1) the circle that is centered at the hyperbola's center and that passes through the hyperbola's vertices; (2) either directrix; and (3) either of the asymptotes. [22] Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group.

  8. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The area of a hyperbolic triangle is given by its defect in radians multiplied by R 2, which is also true for all convex hyperbolic polygons. [2] Therefore all hyperbolic triangles have an area less than or equal to R 2 π. The area of a hyperbolic ideal triangle in which all three angles are 0° is equal to this maximum.

  9. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.