enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  3. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  4. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    These combinations (subsets) are enumerated by the 1 digits of the set of base 2 numbers counting from 0 to 2 n − 1, where each digit position is an item from the set of n. Given 3 cards numbered 1 to 3, there are 8 distinct combinations , including the empty set:

  5. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.

  6. Lottery mathematics - Wikipedia

    en.wikipedia.org/wiki/Lottery_mathematics

    The numerator equates to the number of ways to select the winning numbers multiplied by the number of ways to select the losing numbers. For a score of n (for example, if 3 choices match three of the 6 balls drawn, then n = 3), ( 6 n ) {\displaystyle {6 \choose n}} describes the odds of selecting n winning numbers from the 6 winning numbers.

  7. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    [11] [12] In the Middle Ages, combinatorics continued to be studied, largely outside of the European civilization. The Indian mathematician Mahāvīra (c. 850) provided formulae for the number of permutations and combinations, [13] [14] and these formulas may have been familiar to Indian mathematicians as early as the 6th century CE. [15]

  8. Combinatorial explosion - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_explosion

    Then 1! = 1, 2! = 2, 3! = 6, and 4! = 24. However, we quickly get to extremely large numbers, even for relatively small n. For example, 100! ≈ 9.332 621 54 × 10 157, a number so large that it cannot be displayed on most calculators, and vastly larger than the estimated number of fundamental particles in the observable universe. [9]

  9. History of combinatorics - Wikipedia

    en.wikipedia.org/wiki/History_of_combinatorics

    This would have been the first attempt on record to solve a difficult problem in permutations and combinations. [2] The claim, however, is implausible: this is one of the few mentions of combinatorics in Greece, and the number they found, 1.002 × 10 12, seems too round to be more than a guess. [3] [4]