Search results
Results from the WOW.Com Content Network
An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image). [ 4 ] In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold .
A smooth embedding is an injective immersion f : M → N that is also a topological embedding, so that M is diffeomorphic to its image in N. An immersion is precisely a local embedding – that is, for any point x ∈ M there is a neighbourhood, U ⊆ M, of x such that f : U → N is an embedding, and conversely a local embedding is an ...
In order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections , order embeddings constitute a notion which is strictly weaker than the concept of an order isomorphism .
An embedded graph uniquely defines cyclic orders of edges incident to the same vertex. The set of all these cyclic orders is called a rotation system.Embeddings with the same rotation system are considered to be equivalent and the corresponding equivalence class of embeddings is called combinatorial embedding (as opposed to the term topological embedding, which refers to the previous ...
A latent space, also known as a latent feature space or embedding space, is an embedding of a set of items within a manifold in which items resembling each other are positioned closer to one another. Position within the latent space can be viewed as being defined by a set of latent variables that emerge from the resemblances from the objects.
In mathematics, one normed vector space is said to be continuously embedded in another normed vector space if the inclusion function between them is continuous. In some sense, the two norms are "almost equivalent", even though they are not both defined on the same space. Several of the Sobolev embedding theorems are continuous embedding theorems.
The embedding of X into Y is a compact operator: any bounded set in X is totally bounded in Y, i.e. every sequence in such a bounded set has a subsequence that is Cauchy in the norm ||•|| Y. If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator.
The mathematical definition of the ... is an F-space: it admits a complete translation-invariant metric with respect to which the vector ... the embedding is ...