enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The CRAN task view on Time Series is the reference with many more links. The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Autoregressive integrated moving average (ARIMA) models non-stationary time series (that is, whose mean changes over time). Autoregressive conditional heteroskedasticity (ARCH) models time series where the variance changes. Seasonal ARIMA (SARIMA or periodic ARMA) models periodic variation.

  5. Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).

  6. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  7. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]

  8. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  9. RATS (software) - Wikipedia

    en.wikipedia.org/wiki/RATS_(software)

    The program was then expanded by Tom Doan, then of the Federal Reserve Bank of Minneapolis, who added ARIMA and VAR capabilities and went on to found the consulting firm that owns and distributes RATS software. In its early incarnations, RATS was designed primarily for time series analysis, but as it