Search results
Results from the WOW.Com Content Network
[2] [3] An important open mathematics problem solved in the early 21st century is the Poincaré conjecture. Open problems exist in all scientific fields. For example, one of the most important open problems in biochemistry is the protein structure prediction problem [4] [5] – how to predict a protein's structure from its sequence.
Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a topology. A set with a topology is called a topological space.
A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following ...
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Informally, a topological property is a property of the space that can be expressed using open sets. A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are not homeomorphic, it is sufficient to find a topological property which is not shared by them.