Search results
Results from the WOW.Com Content Network
These cells release the peptides growth hormone-releasing hormone (GHRH or somatocrinin) and growth hormone-inhibiting hormone (GHIH or somatostatin) into the hypophyseal portal venous blood surrounding the pituitary. GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many ...
Each hormone acts via multiple mechanisms, but both increase the kidney's absorption of sodium chloride, thereby expanding the extracellular fluid compartment and raising blood pressure. When renin levels are elevated, the concentrations of angiotensin II and aldosterone increase, leading to increased sodium chloride reabsorption, expansion of ...
Each hormone acts via multiple mechanisms, but both increase the kidney's absorption of sodium chloride, thereby expanding the extracellular fluid compartment and raising blood pressure. When renin levels are elevated, the concentrations of angiotensin II and aldosterone increase, leading to increased sodium chloride reabsorption, expansion of ...
The effector organs of the first homeostatic mechanism are the bones, the kidney, and, via a hormone released into the blood by the kidney in response to high PTH levels in the blood, the duodenum and jejunum. Parathyroid hormone (in high concentrations in the blood) causes bone resorption, releasing calcium into the plasma.
Tubuloglomerular feedback is one of several mechanisms the kidney uses to regulate glomerular filtration rate (GFR). It involves the concept of purinergic signaling, in which an increased distal tubular sodium chloride concentration causes a basolateral release of adenosine from the macula densa cells. This initiates a cascade of events that ...
Growth hormone–releasing hormone (GHRH), also known as somatocrinin among other names in its endogenous form and as somatorelin in its pharmaceutical form, is a releasing hormone of growth hormone (GH). It is a 44 [1]-amino acid peptide hormone produced in the arcuate nucleus of the hypothalamus.
Antidiuretic hormone stimulates the kidney tubules to reabsorb and conserve water, resulting in small volumes of highly concentrated urine and decreased plasma osmolality. Antidiuretic hormone is released in response to high solute concentrations in the blood and inhibited by low solute concentrations in the blood.
[6] [7] An increase in the salt concentration causes several cell signals (e.g. adenosine release) that leads to constriction of the adjacent afferent arteriole. This decreases the amount of blood coming from the afferent arterioles to the glomerular capillaries, and therefore decreases the amount of fluid that goes from the glomerular ...