Search results
Results from the WOW.Com Content Network
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
(Here 15 divided by 4 is 3, with a remainder of 3.) ) ¯ One continues repeating step 2 until there are no digits remaining in the dividend. In this example, we see that 30 divided by 4 is 7 with a remainder of 2. The number written above the bar (237) is the quotient, and the last small digit (2) is the remainder. ) ¯
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
This remainder carries forward when the process is repeated on the following digit of the dividend (notated as 'bringing down' the next digit to the remainder). When all digits have been processed and no remainder is left, the process is complete. An example is shown below, representing the division of 500 by 4 (with a result of 125).
The conversion to a base of an integer n represented in base can be done by a succession of Euclidean divisions by : the right-most digit in base is the remainder of the division of n by ; the second right-most digit is the remainder of the division of the quotient by , and so on. The left-most digit is the last quotient.
Division can be written as ... starting with the hundreds digit, 2 is not divisible by 8. Add 20 and 7 to get 27. ... the number is 2. Adding 30 (the remainder, 3 ...