enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luminous efficiency function - Wikipedia

    en.wikipedia.org/wiki/Luminous_efficiency_function

    The CIE photopic luminous efficiency function y (λ) or V(λ) is a standard function established by the Commission Internationale de l'Éclairage (CIE) and standardized in collaboration with the ISO, [1] and may be used to convert radiant energy into luminous (i.e., visible) energy.

  3. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  4. Spectral energy distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_Energy_Distribution

    The SED of M51 (upper right) obtained by combining data at many different wavelengths, e.g. UV, visible, and infrared (left). A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). [1]

  5. Luminous flux - Wikipedia

    en.wikipedia.org/wiki/Luminous_flux

    The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute. The ratio of the total luminous flux to the radiant flux is called the luminous efficacy. This model of the human visual brightness perception, is standardized by the CIE and ISO. [5]

  6. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    The coupling of the two states is strongest when the energy of the source matches the energy difference between the two states. The energy E of a photon is related to its frequency ν by E = hν where h is the Planck constant , and so a spectrum of the system response vs. photon frequency will peak at the resonant frequency or energy.

  7. Luminous intensity - Wikipedia

    en.wikipedia.org/wiki/Luminous_intensity

    Luminous energy: Q v [nb 3] lumen second: lm⋅s T⋅J: The lumen second is sometimes called the talbot. Luminous flux, luminous power Φ v [nb 3] lumen (= candela steradian) lm (= cd⋅sr) J: Luminous energy per unit time Luminous intensity: I v: candela (= lumen per steradian) cd (= lm/sr) J: Luminous flux per unit solid angle: Luminance: L v ...

  8. Spectrum (physical sciences) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(physical_sciences)

    The radio then uses a tuned circuit or tuner to select a single channel or frequency band and demodulate or decode the information from that broadcaster. If we made a graph of the strength of each channel vs. the frequency of the tuner, it would be the frequency spectrum of the antenna signal.

  9. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed, exciting the molecules. Other photons are scattered (not shown here) or transmitted unaffected; if the radiation is in the visible region (400–700 nm), the transmitted light appears as the complementary color (here ...