enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pruning (artificial neural network) - Wikipedia

    en.wikipedia.org/wiki/Pruning_(artificial_neural...

    Pruning is the practice of removing parameters (which may entail removing individual parameters, or parameters in groups such as by neurons) from an existing artificial neural networks. [1] The goal of this process is to maintain accuracy of the network while increasing its efficiency .

  3. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.

  4. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm (GA) for the generation of evolving artificial neural networks (a neuroevolution technique) developed by Kenneth Stanley and Risto Miikkulainen in 2002 while at The University of Texas at Austin. It alters both the weighting parameters and structures of networks, attempting ...

  5. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Xiangyu Chang; Yingcong Li; Samet Oymak; Christos Thrampoulidis (2021). "Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence. 35 (8). arXiv: 2012.08749.

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  8. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    Model compression (e.g. quantization and pruning of model parameters) can be applied to a deep neural network after it has been trained. [19] In the SqueezeNet paper, the authors demonstrated that a model compression technique called Deep Compression can be applied to SqueezeNet to further reduce the size of the parameter file from 5 MB to 500 ...

  9. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    There are two main types of neural network. In neuroscience, a biological neural network is a physical structure found in brains and complex nervous systems – a population of nerve cells connected by synapses. In machine learning, an artificial neural network is a mathematical model used to approximate nonlinear functions.

  1. Related searches artificial neural network pruning method in machine learning applications

    artificial neural network pruningartificial neural network
    artificial neural network removaldecision tree pruning procedure