Search results
Results from the WOW.Com Content Network
Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.
In flowering plants, the gametophytes are very reduced in size, and are represented by the germinated pollen and the embryo sac. The sporophyte produces spores (hence the name) by meiosis, a process also known as "reduction division" that reduces the number of chromosomes in each spore mother cell by half. The resulting meiospores develop into ...
Seed plant gametophytes are extremely reduced in size; the archegonium consists only of a small number of cells, and the entire male gametophyte may be represented by only two cells. [27] Differentiation of the spores. All spores the same size (homospory or isospory). Horsetails (species of Equisetum) have spores which are all of the same size ...
Four chambers (pollen sacs) lined with nutritive tapetal cells are visible by the time the microspores are produced. After meiosis, the haploid microspores undergo several changes: The microspore divides by mitosis producing two cells. The first of the cells (the generative cell) is small and is formed inside the second larger cell (the tube cell).
The main difference between spores and seeds as dispersal units is that spores are unicellular, the first cell of a gametophyte, while seeds contain within them a developing embryo (the multicellular sporophyte of the next generation), produced by the fusion of the male gamete of the pollen tube with the female gamete formed by the ...
The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations. It is the biological process of gametogenesis during which cells that are haploid or diploid divide to create other cells.
In eudicot plants, the entire process happens inside the ovule of a plant. The details of the process vary by species, but the process described here is common. This process starts with a single diploid megasporocyte in the nucleus. This megasporocyte undergoes meiotic cell division to form four cells that are haploid. Three cells die and one ...
Microsporocytes are produced in the microsporangia of gymnosperm cones and the anthers of angiosperms. They are diploid microspore mother-cells, which then produce four haploid microspores by meiosis. These become pollen grains, within which the microspores divide twice by mitosis to produce a very simple gametophyte.