Search results
Results from the WOW.Com Content Network
A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer. The Riemann zeta function is also meromorphic in the whole complex plane, with a single pole of order 1 at ...
In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort. For instance:
In his article, [1] Milne-Thomson considers the problem of finding () when 1. u ( x , y ) {\displaystyle u(x,y)} and v ( x , y ) {\displaystyle v(x,y)} are given, 2. u ( x , y ) {\displaystyle u(x,y)} is given and f ( z ) {\displaystyle f(z)} is real on the real axis, 3. only u ( x , y ) {\displaystyle u(x,y)} is given, 4. only v ( x , y ...
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
As stated above, the complexity of finding a convex hull as a function of the input size n is lower bounded by Ω(n log n). However, the complexity of some convex hull algorithms can be characterized in terms of both input size n and the output size h (the number of points in the hull). Such algorithms are called output-sensitive algorithms.
A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b 0 is the number of connected components; b 1 is the number of one-dimensional or "circular" holes;
The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]
A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.