Search results
Results from the WOW.Com Content Network
Print/export Download as PDF; ... This article summarizes equations in the theory of fluid mechanics. Definitions ... 3000 Solved Problems in Physics, ...
In fluid dynamics, the tea leaf paradox is a phenomenon where tea leaves in a cup of tea migrate to the center and bottom of the cup after being stirred rather than being forced to the edges of the cup, as would be expected in a spiral centrifuge. The correct physical explanation of the paradox was for the first time given by James Thomson in 1857.
In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of viscous forces are small and can be ignored.
Oseen's work is based on the experiments of G.G. Stokes, who had studied the falling of a sphere through a viscous fluid. He developed a correction term, which included inertial factors, for the flow velocity used in Stokes' calculations, to solve the problem known as Stokes' paradox. His approximation leads to an improvement to Stokes ...
In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...
A physical paradox indicates flaws in the theory.. Fluid mechanics was thus discredited by engineers from the start, which resulted in an unfortunate split – between the field of hydraulics, observing phenomena which could not be explained, and theoretical fluid mechanics explaining phenomena which could not be observed – in the words of the Chemistry Nobel Laureate Sir Cyril Hinshelwood.
In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations.
Many problems of fluid dynamics and magnetohydrodynamics fall within this category. Recent developments in topological fluid dynamics include also applications to magnetic braids in the solar corona, DNA knotting by topoisomerases, polymer entanglement in chemical physics and chaotic behavior in dynamical systems. A mathematical introduction to ...