enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/KuttaJoukowski_theorem

    Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications. [2] Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the ...

  3. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    This is known as the Kutta–Joukowski theorem. [6] This equation applies around airfoils, where the circulation is generated by airfoil action; and around spinning objects experiencing the Magnus effect where the circulation is induced mechanically. In airfoil action, the magnitude of the circulation is determined by the Kutta condition. [6]

  4. Index of physics articles (K) - Wikipedia

    en.wikipedia.org/wiki/Index_of_physics_articles_(K)

    Kutta condition; Kutta–Joukowski theorem; Kuznetsov NK-14; Kuzyk quantum gap; Kyong Wonha; Kyriakos Tamvakis; K·p perturbation theory; Kármán line; Kármán vortex street; Kármán–Howarth equation; Källén–Lehmann spectral representation; Köhler theory; König's theorem (kinetics) Küssner effect

  5. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    A solution of the potential equation directly determines only the velocity field. The pressure field is deduced from the velocity field through Bernoulli's equation. Comparison of a non-lifting flow pattern around an airfoil; and a lifting flow pattern consistent with the Kutta condition in which the flow leaves the trailing edge smoothly

  6. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    When an airfoil is moving with an angle of attack, the starting vortex has been cast off and the Kutta condition has become established, there is a finite circulation of the air around the airfoil. The airfoil is generating lift, and the magnitude of the lift is given by the Kutta–Joukowski theorem. [5]: § 4.5

  7. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  8. Nikolay Zhukovsky (scientist) - Wikipedia

    en.wikipedia.org/wiki/Nikolay_Zhukovsky_(scientist)

    He was also responsible for the eponymous water hammer equation used by civil engineers. He published a derivation for the maximum energy obtainable from a turbine in 1920, at the same time as German scientist Albert Betz. [3] This is known controversially as Betz's law, as this result was also derived by British scientist Frederick W. Lanchester.

  9. Downwash - Wikipedia

    en.wikipedia.org/wiki/Downwash

    The effect of downwash from a hovering Sikorsky Seahawk is clearly visible on the surface of water below.. In aeronautics, downwash is the change in direction of air deflected by the aerodynamic action of an airfoil, wing, or helicopter rotor blade in motion, as part of the process of producing lift. [1]