Search results
Results from the WOW.Com Content Network
Substitutional solid solution strengthening occurs when the solute atom is large enough that it can replace solvent atoms in their lattice positions. Some alloying elements are only soluble in small amounts, whereas some solvent and solute pairs form a solution over the whole range of binary compositions.
Fundamentally, the Hume-Rothery rules are restricted to binary systems that form either substitutional or interstitial solid solutions. However, this approach limits assessing advanced alloys which are commonly multicomponent systems. Free energy diagrams (or phase diagrams) offer in-depth knowledge of equilibrium restraints in complex systems.
The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies. Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy.
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase". [3]The definition "crystal containing a second constituent which fits into and is distributed in the lattice of the host crystal" given in refs., [4] [5] is not general and, thus, is not recommended.
For this strengthening mechanism, solute atoms of one element are added to another, resulting in either substitutional or interstitial point defects in the crystal (see Figure on the right). The solute atoms cause lattice distortions that impede dislocation motion, increasing the yield stress of the material. Solute atoms have stress fields ...
In the crystal solid state, diffusion within the crystal lattice occurs by either interstitial or substitutional mechanisms and is referred to as lattice diffusion. [1] In interstitial lattice diffusion, a diffusant (such as C in an iron alloy), will diffuse in between the lattice structure of another crystalline element.
Aluminium–scandium alloys (AlSc) are aluminum alloys that consist largely of aluminium (Al) and traces of scandium (Sc) as the main alloying elements.In principle, aluminium alloys strengthened with additions of scandium are very similar to traditional nickel-base superalloys in that both are strengthened by coherent, coarsening resistant precipitates with an ordered L1 2 structure.
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. [1] Key characteristics of a superalloy include mechanical strength , thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.