Search results
Results from the WOW.Com Content Network
[citation needed] For producing carbon fiber higher molecular weight is desired. [ 15 ] In the production of carbon fibers containing 600 tex (6k) PAN tow, the linear density of filaments is 0.12 tex and the filament diameter is 11.6 μm which produces a carbon fiber that has the filament strength of 417 kgf/mm2 and binder content of 38.6%.
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide.Some commonly industrially produced Koch acids include pivalic acid, 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [1]
In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R 2 C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids.
The cyanide source can be potassium cyanide (KCN), sodium cyanide (NaCN) or trimethylsilyl cyanide ((CH 3) 3 SiCN). With aromatic aldehydes such as benzaldehyde, the benzoin condensation is a competing reaction. The reaction is used in carbohydrate chemistry as a chain extension method for example that of D-xylose.
One of the simplest member is C(CN) 4 (tetracyanomethane, also known as carbon tetracyanide). Organic chemists often refer to cyanides as nitriles. In general, cyanide is an electronegative substituent. Thus, for example, cyanide-substituted carboxylic acids tend to be stronger than the parents.
Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO 2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required. Decarboxylative cross-coupling general reaction scheme
The Knoevenagel condensation and they allow keto acids serve as a stabilizing protecting group for carboxylic acid enols. [6] [page needed] [4] For the free acids, conditions that deprotonate the carboxyl group (possibly protonating the electron-withdrawing group to form a zwitterionic tautomer) accelerate decarboxylation. [7]
Cyanuric chloride is employed as a reagent in organic synthesis for the conversion of alcohols into alkyl chlorides, [8] and carboxylic acids into acyl chlorides: [9]. It is also used as a dehydrating agent, e.g. in the conversion of amides to nitriles, [10] and for the activation of carboxylic acids for reduction to alcohols.