enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Each group is named by Small Groups library as G o i, where o is the order of the group, and i is the index used to label the group within that order. Common group names: Z n: the cyclic group of order n (the notation C n is also used; it is isomorphic to the additive group of Z/nZ) Dih n: the dihedral group of order 2n (often the notation D n ...

  3. List of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_simple_groups

    Isomorphisms: 2 B 2 (2) is the Frobenius group of order 20. Remarks: Suzuki group are Zassenhaus groups acting on sets of size (2 2n+1) 2 + 1, and have 4-dimensional representations over the field with 2 2n+1 elements. They are the only non-cyclic simple groups whose order is not divisible by 3. They are not related to the sporadic Suzuki group.

  4. Category : Lists of groups with specific numbers of members

    en.wikipedia.org/wiki/Category:Lists_of_groups...

    Also included are groups in arts and entertainment (both fictional characters and performers or artists) and in history, and groups of abstract concepts. Criteria for inclusion: In order to be included in these lists, a group should be well known as a group, rather than being loosely associated people or concepts which happen to total to the ...

  5. Finite group - Wikipedia

    en.wikipedia.org/wiki/Finite_group

    Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p − 1 not divisible by q. For a necessary and sufficient condition, see cyclic number.

  6. Simple group - Wikipedia

    en.wikipedia.org/wiki/Simple_group

    Proof: If n is a prime-power, then a group of order n has a nontrivial center [13] and, therefore, is not simple. If n is not a prime power, then every Sylow subgroup is proper, and, by Sylow's Third Theorem, we know that the number of Sylow p-subgroups of a group of order n is equal to 1 modulo p and divides n.

  7. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...

  8. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    The order of a group (G, •) is the cardinality (i.e. number of elements) of G. A group with finite order is called a finite group. order of a group element The order of an element g of a group G is the smallest positive integer n such that g n = e. If no such integer exists, then the order of g is said to be infinite. The order of a finite ...

  9. Order (group theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(group_theory)

    The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem). The statement does not hold for composite orders, e.g. the Klein four-group does not have an element of order