Search results
Results from the WOW.Com Content Network
However, fingerprints based on SHA-256 and other hash functions with long output lengths are more likely to be truncated than (relatively short) MD5 or SHA-1 fingerprints. In situations where fingerprint length must be minimized at all costs, fingerprint security can be boosted by increasing the cost of calculating the fingerprint.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
The HAVAL hashes (also termed fingerprints) are typically represented as 32-, 40-, 48-, 56- or 64-digit hexadecimal numbers. The following demonstrates a 43-byte ASCII input and the corresponding HAVAL hash (256 bits, 5 passes):
256 256 512 64 [note 3] 32 10 BLAKE3: Unlimited [note 4] 256 [note 5] 512 64 32 7 GOST: 256 256 256 256 32 32 HAVAL: 256/224/192/160/128 256 1024 64 32 3/4/5 MD2: 128 384 128 – 32 18 MD4: 128 128 512 64 32 3 MD5: 128 128 512 64 32 64 PANAMA: 256 8736 256 – 32 – RadioGatún: Unlimited [note 6] 58 words 19 words [note 7] – 1–64 [note 8 ...
RIPEMD-256: 256 bits hash RIPEMD-320: 320 bits hash SHA-1: 160 bits Merkle–Damgård construction: SHA-224: 224 bits Merkle–Damgård construction: SHA-256: 256 bits Merkle–Damgård construction: SHA-384: 384 bits Merkle–Damgård construction: SHA-512: 512 bits Merkle–Damgård construction: SHA-3 (subset of Keccak) arbitrary sponge ...
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
SHA-3 instances are drop-in replacements for SHA-2, intended to have identical security properties. SHAKE will generate as many bits from its sponge as requested, thus being extendable-output functions (XOFs). For example, SHAKE128(M, 256) can be used as a hash function with a 256 character bitstream with 128-bit security strength.