Search results
Results from the WOW.Com Content Network
LENS-X is an 8 foot diameter by 100 foot expansion tunnel with a top speed of Mach 30. The drive chamber, filled with helium or hydrogen gas, is compressed to 3,000 psi at 1000 degrees Fahrenheit; this breaks the first diaphragm, causing the driven chamber to experience an influx of hot gas, generating pressures over 20,000 psi before the ...
The HEAT-H2 Test Unit is an arc-heated aerothermal tunnel providing high-enthalpy flow at high Mach numbers and dynamic pressures simulating hypersonic flight at pressure altitudes up to 120 atm. H2 utilitzes an N-4 Huels-type arc heater to generate high-temperature, high-pressure air for expansion through a hypersonic nozzle into the evacuated test cell.
Eyeglass users experience tunnel vision to varying degrees due to the corrective lens only providing a small area of proper focus, with the rest of the field of view beyond the lenses being unfocused and blurry. Where a naturally sighted person only needs to move their eyes to see an object far to the side or far down, the eyeglass wearer may ...
The tunnel has a test section of 0.44 meters (diameter) by a length of 1 meter. The inviscid core is 0.17 m at Mach 8. It is capable of testing at Mach numbers from 5 to 16 and Reynolds numbers from 100 to 20 million per meter. The tunnel can be modified to accommodate a detonation driver using a mixture of hydrogen, oxygen and helium.
NASA Langley's Hypersonic Facilities Complex, 1969. A hypersonic wind tunnel is designed to generate a hypersonic flow field in the working section, thus simulating the typical flow features of this flow regime - including compression shocks and pronounced boundary layer effects, entropy layer and viscous interaction zones and most importantly high total temperatures of the flow.
Helium conducts heat much more efficiently than air, but has a lower heat capacity. The expansion of gas when pressure is reduced in the diving regulator causes intense cooling, and the chilled gas is heated to body temperature and humidified in the alveoli, which causes rapid heat loss from the body by conduction and evaporation.
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
A shrink tunnel or heat tunnel is a heated tunnel mounted over or around a conveyor system. Items (such as packaging ) have shrink film loosely applied; with heat, the film shrinks to fit snugly around the wrapped object.