Search results
Results from the WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
gretl is an example of an open-source statistical package. ADaMSoft – a generalized statistical software with data mining algorithms and methods for data management; ADMB – a software suite for non-linear statistical modeling based on C++ which uses automatic differentiation; Chronux – for neurobiological time series data; DAP – free ...
In multilevel modeling, an overall change function (e.g. linear, quadratic, cubic etc.) is fitted to the whole sample and, just as in multilevel modeling for clustered data, the slope and intercept may be allowed to vary. For example, in a study looking at income growth with age, individuals might be assumed to show linear improvement over time.
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains. [2] It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).