enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  3. Equivalent weight - Wikipedia

    en.wikipedia.org/wiki/Equivalent_weight

    In chemistry, equivalent weight (also known as gram equivalent [1] or equivalent mass) is the mass of one equivalent, that is the mass of a given substance which will combine with or displace a fixed quantity of another substance.

  4. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    mass of 1 L of hydrogen gas at STP: ≈ 89.9349 mg dalton: Da 1/12 the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest: ≈ 1.660 539 068 92 (52) × 10 −27 kg ‍ [20] dram (apothecary; troy) dr t ≡ 60 gr = 3.887 9346 g: dram (avoirdupois) dr av ≡ 27 + 11 ⁄ 32 gr = 1.771 845 195 ...

  5. Equivalent (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Equivalent_(chemistry)

    The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −. An earlier definition, used especially for chemical elements , holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen , 8 g (0.28 oz) of oxygen , or 35.5 g (1.25 oz) of chlorine —or that will displace ...

  6. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces). An energy unit commonly used in nutritional contexts within non-metric ...

  7. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of massenergy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the massenergy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  9. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    The greatest energy source by far is matter itself, according to the massenergy equivalence. This energy is described by E = mc 2, where c is the speed of light. In terms of density, m = ρV, where ρ is the volumetric mass density, V is the volume occupied by the mass.