Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Solutions are then obtained by making the inverse operator of F act on the known function. The operational calculus generally is typified by two symbols: the operator p, and the unit function 1. The operator in its use probably is more mathematical than physical, the unit function more physical than mathematical.
Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .
For that purpose, the divided-difference formula and/or its x 0 point should be chosen so that the formula will use, for its linear term, the two data points between which the linear interpolation of interest would be done. The divided difference formulas are more versatile, useful in more kinds of problems.
In more explicit terms the "doubling function" may be denoted by g(x) = 2x and the "squaring function" by f(x) = x 2. The "derivative" now takes the function f(x), defined by the expression "x 2", as an input, that is all the information—such as that two is sent to four, three is sent to nine, four is sent to sixteen, and so on—and uses ...
A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer. The Riemann zeta function is also meromorphic in the whole complex plane, with a single pole of order 1 at ...
In calculus terms, the integral of the velocity function v(t) is the displacement function x(t). In the figure, this corresponds to the yellow area under the curve labeled s ( s being an alternative notation for displacement).
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.