Search results
Results from the WOW.Com Content Network
For example, in statistical parsing a dynamic programming algorithm can be used to discover the single most likely context-free derivation (parse) of a string, which is commonly called the "Viterbi parse". [4] [5] [6] Another application is in target tracking, where the track is computed that assigns a maximum likelihood to a sequence of ...
The reverse of a string is a string with the same symbols but in reverse order. For example, if s = abc (where a, b, and c are symbols of the alphabet), then the reverse of s is cba. A string that is the reverse of itself (e.g., s = madam) is called a palindrome, which also includes the empty string and all strings of length 1.
The sequence of permutations generated by the Steinhaus–Johnson–Trotter algorithm has a natural recursive structure, that can be generated by a recursive algorithm. . However the actual Steinhaus–Johnson–Trotter algorithm does not use recursion, instead computing the same sequence of permutations by a simple iterative me
The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding.
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
For example, in the string abcbc, the suffix bc is also a prefix of the suffix bcbc. In such a case, the path spelling out bc will not end in a leaf, violating the fifth rule. To fix this problem, S {\displaystyle S} is padded with a terminal symbol not seen in the string (usually denoted $ ).
For example, if a is some element of X, then a ∨ 1 = 1 and a ∧ 1 = a. The word problem for free bounded lattices is the problem of determining which of these elements of W(X) denote the same element in the free bounded lattice FX, and hence in every bounded lattice. The word problem may be resolved as follows.
This facet of word2vec has been exploited in a variety of other contexts. For example, word2vec has been used to map a vector space of words in one language to a vector space constructed from another language. Relationships between translated words in both spaces can be used to assist with machine translation of new words. [27]