Search results
Results from the WOW.Com Content Network
Glass and metals are examples of isotropic materials. [3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate. Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict.
Fourth-rank tensor properties, like the elastic constants, are anisotropic, even for materials with cubic symmetry. The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material, stiffness (or compliance) tensors are used instead.
Nearly all single crystal systems are anisotropic with respect to mechanical properties, with Tungsten being a very notable exception, as it is a cubic metal with stiffness tensor coefficients that exist in the proper ratio to allow for mechanical isotropy. In general, however, cubic crystals are not mechanically isotropic.
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.
The individual layers generally are orthotropic (that is, with principal properties in orthogonal directions) or transversely isotropic (with isotropic properties in the transverse plane) with the laminate then exhibiting anisotropic (with variable direction of principal properties), orthotropic, or quasi-isotropic properties. Quasi-isotropic ...
An important goal of micromechanics is predicting the anisotropic response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. [3] Micromechanics allows predicting multi-axial responses that are often difficult to measure experimentally.
In condensed matter physics, magnetic anisotropy describes how an object's magnetic properties can be different depending on direction. In the simplest case, there is no preferential direction for an object's magnetic moment. It will respond to an applied magnetic field in the same way, regardless of which direction the field is applied.
The Tensorial Anisotropy Index A T [5] extends the Zener ratio for fully anisotropic materials and overcomes the limitation of the AU that is designed for materials exhibiting internal symmetries of elastic crystals, which is not always observed in multi-component composites. It takes into consideration all the 21 coefficients of the fully ...