Search results
Results from the WOW.Com Content Network
Fourier discovered that every continuous, periodic function could be described as an infinite sum of trigonometric functions. Even non-periodic functions can be represented as an integral of sines and cosines through the Fourier transform. This has applications to quantum mechanics [64] and communications, [65] among other fields.
The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. [47] He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more ...
Quasiperiodic behavior is almost but not quite periodic. [2] The term used to denote oscillations that appear to follow a regular pattern but which do not have a fixed period. The term thus used does not have a precise definition and should not be confused with more strictly defined mathematical concepts such as an almost periodic function or a ...
Fig 1. The top graph shows a non-periodic function () in blue defined only over the red interval from 0 to P. The function can be analyzed over this interval to produce the Fourier series in the bottom graph. The Fourier series is always a periodic function, even if original function () is not.
An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ]
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation + ( ()) =, where a, q are real-valued parameters. Since we may add π/2 to x to change the sign of q, it is a usual convention to set q ≥ 0.