Search results
Results from the WOW.Com Content Network
Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem .
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.
What stopping rule minimizes the expected rank of the selected observation, and what is its corresponding value? The general solution to this full-information expected rank problem is unknown. The major difficulty is that the problem is fully history-dependent, that is, the optimal rule depends at every stage on all preceding values, and not ...
Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.
Figure 1. Finding the shortest path in a graph using optimal substructure; a straight line indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects (among other paths, not shown, sharing the same two vertices); the bold line is the overall shortest path from start to goal.
Derivative-free optimization is a subject of mathematical optimization. This method is applied to a certain optimization problem when its derivatives are unavailable or unreliable. Derivative-free methods establish a model based on sample function values or directly draw a sample set of function values without exploiting a detailed model.
The first matrix Riccati differential equation solves the linear–quadratic estimation problem (LQE). The second matrix Riccati differential equation solves the linear–quadratic regulator problem (LQR). These problems are dual and together they solve the linear–quadratic–Gaussian control problem (LQG).
Sub.3.3.1 Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point : (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other ...