Search results
Results from the WOW.Com Content Network
Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein 's geometric formulation rather than the treatment of gravity as a mysterious ...
The loop representation also provides a natural solution of the spatial diffeomorphism constraint, making a connection between canonical quantum gravity and knot theory. Surprisingly there were a class of loop states that provided exact (if only formal) solutions to Ashtekar's original (ill-defined) Wheeler–DeWitt equation .
(Later, loop quantum gravity inherited this geometric interpretation of gravity, and posits that a quantum theory of gravity is fundamentally a quantum theory of spacetime.) In the 1920s, the French mathematician Élie Cartan formulated Einstein's theory in the language of bundles and connections, [ 1 ] a generalization of Riemannian geometry ...
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics.It deals with environments in which neither gravitational nor quantum effects can be ignored, [1] such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.
In the early universes before the Big Bang, there are theories that ''loop quantum gravity" and "loop quantum structures'' formed space. The Lorentz invariance and universal constants describe elementary particles that do not yet exist. A fecund universe is a multiverse theory by Lee Smolin about the role of black holes. The theory suggests ...
He has made contributions to quantum gravity theory, in particular the approach known as loop quantum gravity. He advocates that the two primary approaches to quantum gravity, loop quantum gravity and string theory, can be reconciled as different aspects of the same underlying theory. He also advocates an alternative view on space and time that ...
Smolin discusses three potential approaches by which a unified theory of quantum gravity, arguably the foremost issue in theoretical physics, may be realized. Approaches discussed include string theory, M-theory, and Smolin's preferred approach, loop quantum gravity. Smolin suggests that these approaches may be approximations of a single ...
A very different approach to quantum gravity called loop quantum gravity is fully non-perturbative and manifestly background-independent: geometric quantities, such as area, are predicted without reference to a background metric or asymptotics (e.g. no need for a background metric or anti-de Sitter asymptotics), only a given topology.