Search results
Results from the WOW.Com Content Network
The ice-core methane clathrate record is a primary source of data for global warming research, along with oxygen and carbon dioxide. Methane clathrates used to be considered as a potential source of abrupt climate change, following the clathrate gun hypothesis. In this scenario, heating causes catastrophic melting and breakdown of primarily ...
Methane clathrate, also known commonly as methane hydrate, is a form of water ice that contains a large amount of methane within its crystal structure. Potentially large deposits of methane clathrate have been found under sediments on the ocean floors of the Earth, although the estimates of total resource size given by various experts differ by ...
In the Arctic, the main human-influenced sources of methane are thawing permafrost, Arctic sea ice melting, clathrate breakdown and Greenland ice sheet melting. This methane release results in a positive climate change feedback (meaning one that amplifies warming), as methane is a powerful greenhouse gas. [ 3 ]
A new study suggests that the planet’s icy interior and liquid ocean could be insulated with a three-to-six-mile-thick layer of methane clathrate, which is solid water ice with methane gas ...
Temperatures close to the freezing point of methane (90.4 K; −182.8 °C; −296.9 °F) could lead to both floating and sinking ice - that is, a hydrocarbon ice crust above the liquid and blocks of hydrocarbon ice on the bottom of the lake bed. The ice is predicted to rise to the surface again at the onset of spring before melting.
Methane clathrate block embedded in the sediment of hydrate ridge, off Oregon, USA. Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen bonded, frozen water molecules.
The worms colonize the methane ice and appear to survive by gleaning bacteria, which in turn metabolize the clathrate. In 1997, Charles Fisher, professor of biology at Pennsylvania State University, discovered the worm living on mounds of methane ice at a depth of half a mile (~800 m) on the ocean floor in the Gulf of Mexico. [2]
Methane venting includes the release of methane in the form of fluid and gases from methane seeps as methane ice dissociates. Due to the narrow RHSZ at the upper continental slope, methane ice at Southern Hydrate Ridge is metastable such that changes in seafloor temperature and pressure may lead to destabilization of methane ice and the ...