Search results
Results from the WOW.Com Content Network
A square wave is a non-sinusoidal periodic waveform in which the amplitude ... which are related by the equation f = 1/T. A square wave can also be defined with ...
A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).
The wave equation is a second-order linear partial differential equation for the ... with the constant of proportionality being the square of the speed of the wave. ...
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
One way to generate fairly accurate square wave signals with 1/n duty factor, where n is an integer, is to vary the duty cycle until the nth-harmonic is significantly suppressed. For audio-band signals, this can even be done "by ear"; for example, a -40 dB reduction in the 3rd harmonic corresponds to setting the duty factor to 1/3 with a ...
Plot of normalized function (i.e. ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] = = (), using ordinary frequency f, where is the normalized form [10] of the sinc function and = (/) / = (/), using angular frequency , where is the unnormalized form of the sinc function.
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.