Search results
Results from the WOW.Com Content Network
A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. In an ideal square wave, the transitions between minimum and maximum are instantaneous.
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The Schrödinger equation, describing states of quantum particles, has solutions that describe a system and determine precisely how the state changes with time. Suppose a wave function ψ(x, t) gives a description of the particle (position x at a given time t). A wave function is square integrable if
The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case. For waves on a string, or in a medium such as water, the amplitude is a displacement.
The blue curve is the cross-correlation of a square wave and a cosine template, as the phase lag of the template varies over one cycle. The amplitude and phase at the maximum value are the polar coordinates of one harmonic in the Fourier series expansion of the square wave.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
For one spinless particle in one dimension, if the wave function is interpreted as a probability amplitude; the square modulus of the wave function, the positive real number | (,) | = (,) (,) = (), is interpreted as the probability density for a measurement of the particle's position at a given time t.
The Dirac equation is a relativistic wave equation detailing electromagnetic interactions. Dirac waves accounted for the fine details of the hydrogen spectrum in a completely rigorous way. The wave equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed.