Search results
Results from the WOW.Com Content Network
Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the ...
The position and orientation of the body at any later time t will be described by the transformation f(t). Since f(0) = I is in E + (3), the same must be true of f(t) for any later time. For that reason, the direct Euclidean isometries are also called "rigid motions".
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
For instance, active transformations are useful to describe successive positions of a rigid body. On the other hand, passive transformations may be useful in human motion analysis to observe the motion of the tibia relative to the femur , that is, its motion relative to a ( local ) coordinate system which moves together with the femur, rather ...
Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning ...
In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. [1] Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used ...
In computer graphics, free-form deformation (FFD) is a geometric technique used to model simple deformations of rigid objects. It is based on the idea of enclosing an object within a cube or another hull object, and transforming the object within the hull as the hull is deformed.
An isometry from a Euclidean space onto itself is called Euclidean isometry, Euclidean transformation or rigid transformation. The rigid transformations of a Euclidean space form a group (under composition), called the Euclidean group and often denoted E(n) of ISO(n). The simplest Euclidean transformations are translations